
MINI-COURSE: CONFIGURATION SPACES

These are lecture notes for a mini-course given by Ben Knudsen at the Algebraic
structures in topology II conference that took place June 5-14, 2024 in San Juan,
Puerto Rico. They were typed by Sarah Anderson and Fabio Capovilla-Searle. Any
typos or mistakes are the fault of the scribers (not the speaker).

1. Lecture 1

Definition 1.1. Let X be a space. The ordered Configuration space of k many
points in X is

Fk(X) = {(x1, . . . , xk) ∈ Xk | xi ̸= xj if i ̸= j}.
The unordered Configuration space of k many points in X is

Bk(X) = Fk(X)/Σk,

where Σk is the group of permutations on k elements.

Axiom 1.2. Configuration Spaces are intrinsically interesting.

Question. How do we study them?

There are two ways: one at a time or inductively. We start with studying them
one at a time.

Example. Let X = Rn and k = 2, that is, 2 labeled points in Rn as in figure 1.

Figure 1. F2(Rn)

There are three relevant pieces of information for which we can always find the
labeled points: the center of mass c, the distance d of each point from the center of
mass, and the direction θ of the two labeled points with respect c. This results in

F2(Rn) ∼= Rn × R>0 × Sn−1

Since Rn and R>0 are contractible, then

F2(Rn)
γ−→
∼

Sn−1

(x1, x2) 7→
x2 − x1

|x2 − x1|
1



2 MINI-COURSE: CONFIGURATION SPACES

where γ is the Gauss map. In addition,

B2(R) ≃ RPn−1

Example. Let X = R and k an arbitrary integer as in figure 2.

Figure 2. Fk(R)

Then

Bk(R) = {(t1, . . . , tk) ∈ [0, 1] | 0 < t1 < · · · < tk < 1},
∼= int(∆k),

≃ ∗

where ∆k is a k-simplex. In addition,

Fk(R) ≃ Σk.

Example. Let X = Sn and k = 2 as in figure 3.

Figure 3. F2(S
n)

Stereo-graphic projection gives

F2(S
n) ∼= TSn

Example. Let X = S1 and k an arbitrary integer as in figure 4.

Stereo-graphic projection gives

Fk(S
1) ≃

∐
(k−1)!

S1
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Figure 4. Fk(S
1)

The other way of studying Configuration spaces is by induction.

Theorem 1.3. (Fadell-Neuwirth 1962) Let M be a connected manifold of dimen-
sion greater than 1. The restricted coordinate projection

Fk(M) → Fk−1(M)

(x1, . . . , xk) 7→ (x1, . . . , xk−1)

is a fiber bundle with fiber M \ {x1, . . . , xk−1}.

Corollary 1.4. If Σ is an aspherical surface, then Fk(Σ) and Bk(Σ) are also
aspherical.

The fundamental group of Fk(Σ) is the pure surface braid groups and the fun-
damental group of Bk(Σ) is the surface braid groups.

Example. Thanks to Artin,

π1(Bk(R2)) ∼= ⟨σ1, . . . , σk−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| > 1⟩

Figure 5. An example of a pure surface braid group.

We can also compute the group cohomology of certain configuration spaces. For
example, when M = Rn the Serre Spectral Sequence is:

Hp(Fk−1(Rn);Hq(Rn \ {x1, . . . , xk−1}) ⇒ Hp−q(Fk(Rn))

By the Leray-Hirsch Theorem, the spectral sequence collapses provided

H∗(Fk(Rn)) → H∗(Rn \ {x1, . . . , xk−1})



4 MINI-COURSE: CONFIGURATION SPACES

is surjective. The fundamental class of the ith sphere comes from Sn−1 ∼= ∂Bϵ(xi) ⊆
Rn \ {x1, . . . , xk−1}.

Fk(Rn)
πab−−→ F2(Rn)

γ−→ Sn−1

Exercise. The degree of

Sn−1 ∼= ∂Bϵ(xi) ⊆ Rn \ {x1, . . . , xk−1} ⊆ Fk(Rn)
γjk−−→ Sn−1

is δij (the Kronecker delta).

Surjectivity follows, so the Betti numbers (and homology) of Fk(Rn) coincide

with those of
∏k−1

j=1 ∨jS
n−1. We also learn that the fundamental class αab := γ∗

ab ∈
Hn−1(Fk(Rn)) generate the cohomology ring. The fundamental class αab: has the
following properties:

(1) α2
ab = 0.

(2) αab = (−1)nαba.
(3) The Arnold relation: αabαbc + αbcαca + αcaαab = 0

The proof of (3): reduce to k = 3, (a, b, c) = (1, 2, 3) and note that rkH2(k−1) = 2
and use the action of Σ3.

Definition 1.5. Let A be the quotient of the free graded commutative ring on
{αab}1≤a ̸=b≤k by relations (1), (2) and (3).

Theorem 1.6. (Arnold-Cohen) The map

A → H∗(Fk(Rn))

is an isomorphism.

Proof. Leray-Hirsch Theorem gives a basis {αa1b1αa2b22 . . . αambm} such that ai <
bi and b1 ≤ b2 ≤ · · · ≤ bm. An argument with the Arnold relation shows that this
set spans A. □

A dual spanning set in homology is given by “planetary systems”, i.e., plannar
rooted forests with k leaves, i.e., parenthesized partitions of {1, . . . , k}. This can
be seen in figure 6.

The dual relation to the Arnold relation is

((12)3) + ((23)1) + ((31)2) = 0

which is a Jacobi relation.

Corollary 1.7. For k ≥ 2,

Hi(Bk(Rn);Q) ∼=

{
Q i = 0 or i = n− 1 odd

0 otherwise

Proof. Figure 7 is a proof by picture. □

Or if B =
∐

Bk then

H∗(B(Rn);Q) ∼=

{
P [x]⊗ Λ[y] if n is even

P [x] if n is odd

where |x| = (0, 1) and |y| = (n − 1, 2). Note that (i, k) corresponds to the ith
homological degree and the Configuration space on k many points.
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Figure 6. Different formulations of αij . Note that αij ≃ S1 and
α12α13 ≃ T 2.

Figure 7. Proof by picture of Corollary 1.6.

2. Lecture 2

Question. What is H∗(Fk(T
2))?

Question. What is H∗(Bk(Sg),Fp) for any g > 0?

These are not easy questions. In fact, first question has an answer for k ≤
7 which required computer assisted computations. This lecture will go over one
approach that allowed us to compute H∗(Fk(T

2)). We start off from last lecture
with cohomology instead of homology:

H∗(B(Rn;Q) ∼=

{
P [x]⊗ Λ[x] neven

P [x] nodd

where the bigrading of x is |x| = (0, 1) and the bigrading of y is |y| = (n− 1, 2).
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Definition 2.1. Let X be a space, k be a positive integer, k = i+ j and let

sij : Fk(X) → Fi(X)× Fj(X)

sij : (x1, . . . , xk) 7→ ((x1, . . . , xi), (xi+1, . . . , xk))

The maps sij are

(1) Equivariant, in that sij is (Σi × Σj)-equivariant.
(2) Coassociative, in that the following diagram commutes for any positive in-

tegers a, b, c

Fa+b+c(X) Fa(X)× Fb+c(X)

Fa+b(X)× Fc(X) Fa(X)× Fb(X)× Fc(X)

(3) Counital, in that the following diagram commutes

Fk(X) Fk(X)× F0(X)

Fk(X)

∼=

(4) Cocommutative, in that the maps sij , sji differ by a block permutation:

Fk(X) Fi(X)× Fj(X)

Fj(X)× Fi(X)

sij

sji
∼=

Definition 2.2. A symmetric sequence is a collection X = {X (k)}k≥0 of (graded)
modules with an action of Σk on X (k).

Example. H∗(F (X))(k) = H∗(Fk(X)).

Example. A Σk-representation V determines a symmetric sequence V concentrated
in height k.

Definition 2.3. The tensor product of X and Y is

(X ⊗ Y)(k) =
⊕

i+j=k

IndΣk

Σi×Σj
X (i)⊗ Y(j)

this is called the Day convolution tensor product.

The Day convolution tensor product has a symmetric monoidal structure.

Exercise. Over a field,

H∗(F (X
∐

Y )) ∼= H∗(F (X))⊗H∗(F (Y ))

Definition 2.4. A twisted commutative algebra (TCA) is a commutative monoid
in symmetric sequences.

Exercise. sij endows H∗(F (X)) with a TCA structure.

Exercise. If A is a TCA, then ⊕k≥0A(k)Σk and ⊕k≥0A(k)Σk
inherit algebra struc-

tures.
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The apparent structure of P [x] ⊗ Λ[x] comes from splitting points apart. We
will delve into TCA’s to better understand them before returning to Cohomology
of B(X).

Example. Given X , the free TCA on X is

Sym(X )(k) =
⊕
d≥0

(X⊗d)(k)/Σd,

∼=
⊕
d≥0

⊕
k1+···+kd=k

IndΣk1
×Σk2

×···×σkd
⋊Σd

d⊗
i=1

X (ki)

In particular, if X = R a ring or field, as a Σ1-module, the free TCA on one
generator is S(k) = R for all k, the trivial representation.

Definition 2.5. S is the trivial representation.

Note that TCA is the analogue of a polynomial with one generator.

Exercise. Using our description in terms of forests, show that H∗(F (Rn)) is the
free TCA on Ln(k) = H(n−1)(k−1)(Fk(Rn)).

Since F1(X) = X, the unit 1 ∈ H0(X) determines a homomorphism

S → H∗(F (X))

via this map, H∗(F (X)) is a S-module.

Exercise. For any X ,

(S ⊗ X )(k) =
⊕
l≤k

⊕
{1,...,l}↪→{1,...,k}

X (l)

So a S-module is a functor from the category of finite sets of injections. Commonly
known as an FI-module.

We now return to the cohomology of B(X).

Theorem 2.6. (Church) If M is a connected manifold of dimension n > 1, then
H∗(F (M)) is finitely generated over S.

Theorem 2.7. (Sam-Snowden (2013), Church-Ellenberg-Farb (2014)) Let M be a
finitely generated S-module in characteristic zero.

(1) The function

f 7→ dimM(k)

is eventually equal to a polynomial.
(2) For every partition λ, the multiplicity of the irreducible symmetric group

representation indexed by λ is eventually constant.

Corollary 2.8. The dimension of Hi(Bk(M);Q) is eventually constant.

Exercise. Let X be a symmetric sequence such that

(1) X (0) = 0.
(2) X (1) = R, a ring or a field.
(3) X (k) is finitely generated in each degree.
(4) X (k) vanishes in fixed degree for k large.

Then Sym(X ) is finitely generated over S.



8 MINI-COURSE: CONFIGURATION SPACES

In particular, since these apply to Ln(k) = H(n−1)(k−1)(Fk(Rn)) finite generation
follows from Rn.

Theorem 2.9. (Totaro) Let M be a (for simplicity) oriented manifold of dimension
n > 1. There is a spectral sequence of TCA’s such that

E2
∼= Sym(H∗(M)⊗ Ln) ⇒ H∗(F (M))

Church-Ellenberg-Farb showed that S is a Noetherian TCA. So finite generation
follows from the exercise.

3. Lecture 3

Question. What is the stable multiplicity of any non-trivial representation for any
manifold not equal to Rn, Sn?

Definition 3.1. The Chevalley-Eilenburg complex of a Lie Algebra g is CE(g) =
Sym(g[1]), D(xy) = ±[x, y]. This complex calculates Lie Algebra Homology (i.e.
Torsion over Ug).

Theorem 3.2. (Totaro) The spectral sequence

E2 = CE(H−∗
c (M)⊗ Lie(R[n− 1])) ⇒ H∗(F (M))

This is in homology, not cohomology. The spectral sequence (SS) from Theorem
3.2 does have higher exponentials, but not at the unordered level.

Theorem 3.3. (Knudsen) Rationally, the coinvariencts in the SS collapse, so
H∗(B(M ;Q) is calculated by the complex

Sym(H−∗
c (M ;Q)⊗v ⊕H−∗

c (M ;Q)⊗[v,v]),

D((α⊗ v)(β ⊗ v)) = αβ ⊗ [v, v]

where |v| = (n, 1) and |[v, v]| = (2n − 1, 2). That is, v has cohomological degree n
and one point in the Configuration space while [v, v] has cohomological degree 2n−1
and two points in the Configuration space.

Example. Let’s calculate H∗(B2(Ṫ ),Q) using Theorem 3.3, where Ṫ is the punc-

tured torus. Let x, y be degree 1 generators of H−∗
c (Ṫ ;Q and let their cup product

be z. Furthermore, let (i, k) be the ith homology and k the
First, note that x, y are degree 1 generators in cohomology and z is a degree 2

generator in cohomology. Since H−∗
c

∼= H̃−∗(T 2;Q), then x, y become degree −1
generators in homology and z becomes a degree −2 generator in homology. So for
x, y (2, 1) → (1, 1) and for z (2, 1) → (0, 1). We can now place them in Table 1 in
the (0, 1), (1, 1) spots. Let x̃, ỹ, z̃ be x, y, z decorated by [v, v], respectively. They
gain a degree and a point. Thus, |x̃, ỹ = (2, 2) and |z̃| = (1, 2) are placed in the
table in their respective positions. Now, we can multiply these generators within
Sym. Degrees add when we multiply, but the number of points in the Configuration
space do not change. So |xy| = (2, 2), |zx| = (2, 1), |zy| = (2, 1) and |z2| = (2, 0).

This information is put together in this short exact sequence, where degree 2
maps to degree 1 and degree 1 maps to degree 0.

Q⟨x̃, ỹ, xy⟩ → Q⟨z̃, xz, xy⟩ → Q⟨z2⟩,
xy 7→ z̃
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2 z2 z̃, zx, zy x̃, ỹ, xy
1 z x, y 0
0 1 0 0
(i, k) 0 1 2

Table 1. Table for generators of Sym(H−∗
c (Ṫ ;Q)⊗v ⊕

H−∗
c (Ṫ ;Q)⊗[v,v]), where i is the cohomological degree and k

is the number of points in the Configuration space.

Cup product sends xz 7→ 0, yz 7→ 0, so xy 7→ z̃. Thus, Ṫ has 2 generators of degree
2, 2 generators of degree 1 and 1 generator of degree 0.

We can now tell R2 \{p1, p2} and Ṫ , which are homotopic to each other, because
R2 \ {p1, p2} has two generators of degree 2, but none of degree 1 or 0.

Exercise. Calculate H∗(B(Sn);Q).

Question. How do you calculate H∗(B(CPn);Q)?

Yet another way that we can study configuration spaces is Locally.

Exercise. The topology of B(M) is generated by {B(U)} where U ranges over a
subset of M homeomorphic to

∐
k Rn for some k.

Dugger-Isaksen proved that

hocolimU (B(U))
∼−→ B(M)

Since B(
∐

k Rn) ∼= B(Rn)k, we are reduced (in some sense) to studying Rn.

Question. What structure do configuration spaces carry locally?

Figure 8. Product of Configurations spaces.

Configurations can be multiplied by inserting them into embedded cubes of Rn

as in figure 8. But there are too many choices: how do you embed, how do you
order, what size, what shape, etc. We need to keep track of all choices.

B(Rn) carries k-to-1 operations parametrized by Emb(
∐

k Rn,Rn), that is, the
maps

Emb(
∐
k

Rn,Rn)×B(Rn)k → B(Rn).
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Give B(Rn) the structures of an algebra over the operad Diskn, in particular over
the suboperad En of rectilinear embeddings. In fact, since En(k) knows the center
of the squares and their scaling,

En(k)
∼−→ Fk(Rn).

So B(Rn) is a free algebra.

Question. What actually is an En-algebra?

Consider the map

En(2)×X2 → X

Since En(2) ≃ F2(Rn) ≃ Sn−1, this map induces two maps

D∗(X)⊗2 → H∗(X)

of degree 0 and n− 1, respectively. Because F2(Rn) and F3(Rn) are connected, the
first is commutative and associative. The Arnold/Jacobi relation in H∗(F3(Rn))
implies that the latter is a Lie bracket. By Ching-Salvatore, there is a map from the
shifted spectral Lie operad to Σ∞

+ (En). Then, by universal properties, Σ∞
+ (B(Rn))

forms a spectral higher enveloping algebra.

Theorem 3.4. (Knudsen) (For simplicity, let M be parallelizable)

Σ∞(B(M)) ≃ Σ+ BarLie(Mapc(M,L(Σn−1S)))

Corollary 3.5. (Knudsen, partial result of Aoniana-Klein) Stable homotopy types
of configuration spaces depends only on the proper homotopy type of M .

Question. Are Configuration spaces simple homotopy invariants?

Question. Are Configuration spaces homotopy invariants of simply connected man-
ifolds?

This question has been answered for the rational case by Campos-Idrissi-Willwacher.


