
MINI-COURSE: ALGEBRAIC K-THEORY

These are lecture notes for a mini-course given by Teena Gerhardt
at the Algebraic structures in topology II conference that took place
June 5-14, 2024 in San Juan, Puerto Rico. They were typed by Sof́ıa
Mart́ınez Alberga and Alex Hsu. Any typos or mistakes are the fault
of the scrivers (not the speaker).

1. Lecture 1

This first lecture is intended to introduce and motivate the topic and
so the notes will address the following questions:

(1) What is Algebraic K-theory?
(2) Why should we care about it?

A concise answer to the first question is the following: Algebraic K-
theory is an invariant of rings. Given a ring A, we associate to A a
series of abelian groups

K0(A), K1(A), K2(A), . . . .

In general, it is not immediately clear what exactly is the algebraic K-
theory of a ring measuring or telling us about the ring itself. Initially
K0(A) andK1(A) can be interpreted in a meaningful way. Additionally,
even with these interpretations it is also not clear how the K-theory
groups are related.

1.1. K0 and K1 of a ring. The idea to keep in mind in this section
is that K0(A) has to do with projective modules over A and K1(A) is
about matrices with entries in A.

Notation 1.1. Let P (A) denote the monoid of isomorphism classes
of finitely generated projective A-modules equipped with the binary
operation given by direct sum of A-modules. For an A-module M the
corresponding element in P (A) is denoted [M ].

Definition 1.2. Define K0(A) to be the Grothendieck group comple-
tion of P (A), i.e. the group obtained by formally adjoining inverses to
the monoid P (A).

Remark 1.3. Elements of K0(A) can be written as formal differences
[M ]− [N ] where M and N are finitely generated projective A-modules.

Example 1.4. For a field F , P (F ) ∼= N, so we get K0(F ) ∼= Z.
1
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Remark 1.5. Why do we not look at all projective modules over A?
Suppose we allow infinitely generated projective modules. Let A∞

denote an infinitely generated free module over A and let P be a finitely
generated projective A-module. We have that P ⊕Q ∼= An for some Q
and n ≤ 1, hence

P ⊕ A∞ ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · ·
∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · · ⊕ (P ⊕Q)
∼= A∞.

Thus P ⊕A∞ = A∞, and on K-theory, [P ⊕A∞] = [A∞] = [P ] + [A∞]
implies [P ] = 0, which means K0 of A would be 0.

Now we move on to defining K1(A).

Notation 1.6. Let GL(A) denote the infinite general linear group of
A, i.e. the colimit of

GL1(A) ⊂ GL2(A) ⊂ GL3(A) ⊂ · · · .

Notation 1.7. Let eij(a) ∈ GLn(A) denote the elementary matrix
which is the identity matrix except for the i, j entry, namely,

eij(A) =



1 0 · · ·
0 1 0
...

. . . a
. . .

...
. . . 0

· · · 0 1


for some a ∈ A.

Let En(A) ⊂ GLn(A) denote the subgroup generated by these eij(a).
Let E(A) denote ∪∞

i=1En(A).

Definition 1.8 (Whitehead, Bass, Schanuel). DefineK1(A) := GL(A)ab =
GL(A)/E(A) where the latter equality follows fromWhitehead’s lemma.

1.2. Wall’s finiteness obstruction. In the 1960’s, Wall was inter-
ested in answering the following question, “When is a space homotopy
equivalent to a finite CW complex?” We begin with a definition.

Definition 1.9. A space X is finitely dominated if there exists a finite
CW complex Y with maps f : X → Y, g : Y → X and a homotopy
g ◦ f ≃ 1X .

Now with this definition, Wall’s question is refined in the following
way: if a space is finitely dominated, does it have the homotopy type
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of a finite CW complex? Wall gave the answer, “not always,” and in
fact, Wall gives a criterion on when this is the case.

Theorem 1.10 (Wall). A finitely dominated space X has a finiteness
obstruction ω(X) such that ω(X) = 0 if and only ifX has the homotopy
type of a finite CW-complex.

It turns out this obstruction ω(X) lives in K̃0(Z[πiX]), where K̃0

refers to the reduced 0th K-theory. Note that for a ring A, we have a
homomorphism

Z → K0(A)

n 7→ An

and K̃0(A) is the cokernel of this map, and is called the “reduced
K0(A)”.

Corollary 1.11. If X is simply connected and finitely dominated then
X has the homotopy type of a finite CW complex.

Proof. We have ω(X) ∈ K̃0(Z[π1X]) = K̃0(Z) since the space is simply
connected. Using the fact that every finitely generated projective Z-
module is free, Z ∼= K0(Z), therefore K̃0(Z) = 0. □

1.3. The s-cobordism theorem. (“s” is for “simple homotopy”)
Recall that a cobordism between n-dimensional manifolds M and N

is an (n+1)-dimensional manifold W such that ∂W = M ⊔N . We call
a cobordism an h-cobordism if the inclusion M ↪−→ W and N ↪−→ W are
homotopy equivalences.

The s-cobordism theorem, proven in the 1960’s independently by
Mazur, Stallings, and Barden, answers the following question: Given
n ≥ 5 and W an h-cobordism between closed smooth n-manifolds M
and N , when is this cobordism trivial, i.e. when is W ∼= M × [0, 1]? It
turns out a complete obstruction lies in a quotient of K1(Z[π1M ]).

1.4. K2(A). In 1967, Milnor defined K2(A) by means of the Steinberg
group:

Definition 1.12. For n ≥ 3, the Steinberg group Stn(A) of a ring Ais
the group with generators xij(a) for a ∈ A, i, j ∈ {1, . . . , n}, i ̸= j, and
relations

xij(a)xij(b) = xij(a+ b)

[xij(a), xkl(b)] =


1 j ̸= k, i ̸= l

xil(ab) j = k, i ̸= l

xij(ab) j ̸= k, i = l
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These relations are known as the Steinberg relations.

As an exercise, one can show that the relations are satisfied by the
eij(a) from earlier. Thus there is a map:

ϕ : Stn(A) → En(A)

xij(a) 7→ eij(a)

Note that the Steinberg relations for n include those for n− 1, so

Stn−1(A) ↪→ Stn(A)

and let St(A) = lim−→ Stn(A).

Definition 1.13. For a ring A, K2(A) is defined as the kernel of

ϕ : St(A) → E(A).

1.5. Higher K-groups. It is known that K0, K1, and K2 have rela-
tionships at the time they were defined, which led people to believe
they were specific cases of a common theory.

Example 1.14. Let A be a ring and I an ideal of A. There is an exact
sequence

K2(A, I) K2(A) K2(A/I)

K1(A, I) K1(A) K1(A/I)

K0(A, I) · · ·

The question then was to define Kn(R) for all n ≥ 0 such that it
agreed with how we previously defined K0, K1, and K2, and extended
the relationships between them. This was done by Quillen in the 1970’s.

Definition 1.15. For a ring A,

Kn(A) = πn(BGL(A)+)

for n > 0. This can be extended to n = 0 by forcing it to match with
the usual K0.

Definition 1.16. BGL(A)+ is a CW-complex with a map BGL(A) →
BGL(A)+ such that the map GL(A) = π1(BGL(A)) → π1(BGL(A)+)
is onto and has kernel [GL(A),GL(A)] = E(A), and H∗(BGL(A)) ∼=
H∗(BGL(A)+).
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Indeed, the lower K groups agree (but it is not obvious for K2(A)).
Other modern constructions of K-theory were invented with the goal

of extending K-theory to algebraic objects other than rings. When
restricted to rings, they agree with Quillen’s definition.

Theorem 1.17 (Quillen). Kn(Fq) =


Z n = 0

Z/(qi − 1) n = 2i− 1

0 otherwise

In 2024, Antieau-Krause-Nikolaus gave an algorithm to compute
Kn(Z/pk). ForKn(Z) most cases are known, except for about a quarter
which are related to the next example.

Since it seems to be so inaccessible, why should we study algebraic
K-theory? K-theory has all sorts of applications across mathematics.
We conclude with one example from number theory.

Example 1.18 (Vandiver’s conjecture, due to Kummer 1849). For a
prime p, let K be the maximal real subfield of Q[ζp]. Then p does not
divide the class number of K.

This conjecture is still open, and has been computationally verified
for all primes p < 231. While the conjecture itself is purely number
theoretic, Kurihara proved in the 1990’s that Vandiver’s conjecture is
equivalent to the statement K4i(Z) = 0 for i > 0.

2. Lecture 2

Recall from the last time that to a ring A, we can associate to it
a series of abelian groups, K0(A), K1(A), . . ., called K-theory groups,
and Quillen defined the K-theory groups more generally for q > 0

Kq(A) ∼= πq(BGL(A)+).

We give another example ofK-theory’s interaction with other branches
of mathematics, in particular, as it relates to motivic homotopy theory
in algebraic geometry. The table below illustrates the corresponding
notions.

Topology: Algebraic Geometry:
spaces algebraic varieties
singular cohomology motivic cohomology
topological K-theory algebraic K-theory
Atiyah-Hirzebruch spectral
sequence

motivic spectral sequence

Note that motivic homotopy theory focuses on applying homotopical
techniques to algebraic geometry.
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Today we answer the question: how are K-theory groups computed?
Our previous lecture concluded with discussing the state of the matter
in the 1960’s to 1970’s. In fact the literature of that time, one would
mostly find low dimensional calculations using purely algebraic defini-
tions. Even with Quillen’s definition, it turned out it was very hard to
compute using the plus construction.

As an example consider Kq(Z[x]/(xm)), then in 1979 Geller and
Roberts computed K2(Z[x]/[xm],Z) ∼= Z/2. So now the the question
becomes: how do we get past low dimensional calculations? One ap-
proach which is especially active today is called trace methods. The
idea behind these methods are simple: K-theory is hard to compute,
so we approximate it by things which are more computable. The first
approximation is Hochschild homology, another invariant of rings.

Let A be a ring and define the cyclic bar complex C•(A) defined as

· · · → A⊗ A⊗ A⊗ A → A⊗ A⊗ A → A⊗ A → A → 0

with boundary maps

δi =
i∑

j=0

(−1)jdj

and

dj(a0 ⊗ a1 ⊗ · · · ⊗ aq) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq 0 ≤ j ≤ q

aqa0 ⊗ a1 ⊗ · · · ⊗ aq−1 j > q

As an exercise, one can check δi ◦ δi+1 = 0. We check it a small case.
Let x⊗ y ⊗ z ∈ A⊗ A⊗ A, then

δ2 ◦ δ3(x⊗ y ⊗ z) =δ2(xy ⊗ z − x⊗ yz + zx⊗ y)

=xyz − zxy − (xyz − yzx) + (zxy − yzx)

=0

Definition 2.1. The n-th Hoschshild homology of the ringA is HHn(A) =
Hn(C•(A)), where C•(A) is the cyclic bar complex of A.

Notice that

HH0(A) = H0(C•(A)) = A/{ab− ba} = A/[A,A]

. Additionally it is worth noting that there is also a simplicial perspec-
tive to this. The cyclic bar construction, denoted Bcy

• (A), is comprised
of a simplicial abelian group Bcy

q (A) = A⊗q+1 with face maps di, defined
above and degeneracies si defined as

a0 ⊗ · · · ⊗ aq 7→ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ aq

.



MINI-COURSE: ALGEBRAIC K-THEORY 7

Further, by the Dold-Kan correspondence

HHn(A) = Hn(C•(A)) ∼= πn(|Bcy
0 (A)|).

Moreover, the cyclic bar construction also has a cyclic operator, i.e. at
every simplicial level we have an action by cyclic groups. In particular,
on the i-th level A ⊗ · · · ⊗ A, we have the action of Ci. Thus Bcy

• (A)
is a so-called cyclic object or cyclic simplicial object and its geometric
realization has an S1-action.

There is a trace map relating the q-th K-theory group of A to the q-
th Hochschild homology of A called the Dennis trace, originally defined
by R. Keith Dennis. This map is induced by a simplicial map:

Nr(GLn(A)) → Bcy
r (Mn(A)) → Bcy

r (A).

where the first map above, which has as domain the set of r-simplices
in the nerve of GLn(A), is defined as

(g1, g2, . . . , gr) → (g1g2 . . . gr)
−1 ⊗ g1 ⊗ g2 ⊗⊗ · · · ⊗ gr

and the second map is the trace. Then we construct

Kq(A) ∼= πq(BGL(A)+)
Hurewicz−−−−−→Hq(BGL(A)+)

∼= Hq(BGL(A))
∼= Hq(GL(A))

While Hochschild homology is relatively computable, it unfortunately
turns out to not be a great approximation. This is not too surprising
given the lack of topological aspects in its definition. Thankfully, in
the 80’s, Goodwillie announced that not all is lost. He showed that the
Dennis trace lifts through negative cyclic homology

Kq(A) → HC−
q (A) → HHq(A),

and rationally HC−
q (A) is often a good approximation to K-theory.

Let us now discuss further negative cyclic homology.
Consider the bicomplex in Figure 1, where the maps are

b′ =
n∑

i=1

(−i)idi,

t(a0 ⊗ · · · ⊗ aq) = aq ⊗ a0 ⊗ · · · ⊗ aq−1

N = 1 + t+ t2 + · · ·+ tn

. This has corresponding total complex

Tot(C∗,∗)n = ⊗p+q<nCp,q

with differential d = dh + dv, where dh is the differential in the “hori-
zontal direction” and dv is the differential in the “vertical direction”.
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...
...

...
...

A⊗ A⊗ A A⊗ A⊗ A A⊗ A⊗ A A⊗ A⊗ A · · ·

A⊗ A A⊗ A A⊗ A A⊗ A · · ·

A A A A · · ·

b b′ b b′

b b′

1−t

b

N

b′

1−t N

b b′

1−t

b

N

b′

1−t N

1−t N 1−t N

Figure 1. Bicomplex in the First Quadrant

...
...

...
...

· · · A⊗ A⊗ A A⊗ A⊗ A A⊗ A⊗ A A⊗ A⊗ A · · ·

· · · A⊗ A A⊗ A A⊗ A A⊗ A · · ·

· · · A A A A · · ·

b b′ b b′

b

N

b′

1−t

b

N

b′

1−t N

b

N

b′

1−t

b

N

b′

1−t N

N 1−t N 1−t N

Figure 2. Bicomplex Extended to the Second Quadrant

Definition 2.2. The total homology of the bicomplex is cyclic homol-
ogy HC•(A).

If we use periodicity to extend left, as depicted by Figure 2, the
homology of the resulting total complex is called periodic homology
HP•(A). If we only use the columns in negative degrees, as depicted
by Figure 3, we get negative cyclic homology HC−(A).

Theorem 2.3 (Goodwillie). For A a ring and I a nilpotent ideal, there
is an isomorphism

Kq(A, I)⊗Q
∼=−→ HC−

q (A⊗Q, I ⊗Q).

A theorem of Soulé from 1981 computed the K-theory groups of
Z[x]/(x2) relative to (x). He deduced that Kq(Z[x]/(x2), (x)) is finitely
generated of rank 1 if q is odd and of rank 0 if q is even. This originally
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...
...

...
...

· · · A⊗ A⊗ A A⊗ A⊗ A A⊗ A⊗ A

· · · A⊗ A A⊗ A A⊗ A

· · · A A A

b b′ b

b

N

b′

1−t

b

N

b

N

b′

1−t

b

N

N 1−t N

Figure 3. Bicomplex Restricted to the Second Quadrant

was not proved using Goodwillie’s theorem, but Stasheff used this result
to generalize Soulé’s theorem.

Theorem 2.4 (Stasheff, 1985). Kq(Z[x]/(xm), (x)) is finitely generated
of rank m− 1 if q is odd and rank 0 if q is even.

Furthermore, Goodwillie conjectured that there should be topologi-
cal versions of these theories which captured torsion information, and
this idea was dubbed “Brave New Algebra”.

The first movement to define topological Hochschild homology was
made by Bokstedt. In the table below, we explore the topological ana-
logues for the algebraic tools required to define Hochschild homology.

Algebra: Topology:
ring, A ring spectrum, R
tensor product, ⊗ smash product, ∧
Z sphere spectrum, S
Bcy

• (A) Bcy
• (R)

What is exactly is Bcy
• (R)? It is defined analogously as follows:

R ∧R ∧R ∧R R ∧R ∧R R ∧R R

with face maps

di =

{
id∧i ∧µ ∧ idq−i−1 0 ≤ i < q

(µ ∧ id∧q−1)⊗ τ i = q

and degeneracies

si = id∧(i+1) ∧η ∧ id(q−i) .
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We define topological Hochschild homology to be

THH(R) = |Bcy
• (R)|.

We will abuse notation and use THH(A) to denote THH of a ring A,
where HA is its corresponding Eilenberg-Mac Lane spectrum. These
definitions give rise to the topological Dennis trace

Kq(A) → πq THH(A),

which is what we wanted.

3. Lecture 3

In the previous lecture, we introduced the trace method approach
to calculating K-theory groups which approximated K-theory by more
computable invariants, namely Hochschild homology. Additionally we
discussed a map relating K-theory to Hochschild homology called the
Dennis trace map, which lifted it to a more topological version, namely
the topological Dennis trace Kq(A) → πq THH(A).

Classically, the Dennis trace factors as

Kq(A) → HC−
q (A) → HHq(A)

and rationally, HC−(A) can be a good approximation to the K-theory
of A. Similarly, a better approximation on the topological side is topo-
logical cyclic homology, denoted TCq(A), originally defined by Bokst-
edt, Shang, and Madsen in 1993.

In 2018, there was a large advancement in the field by Nikolaus and
Scholze who gave a novel approach to computing topological cyclic
homology, which we will discuss in this lecture.

Their approach incorporated the cyclotomic trace map

Kq(A) → TCq(A),

and as expected, TC(A) is often a good approximation to the K-theory
of A. In particular, we have the following theorem:

Theorem 3.1 (Dundas-Goodwillie-McCathy). Let A be a ring and I
a nilpotent ideal then the map

trc : Kq(A, T ) → TCq(A, I)

is an isomorphism of groups.

Theorems of this flavor are sometimes referred to as comparison the-
orems. Before continuing we mention some successes of trace methods.
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(1) Bokstedt and Madsen, with the help of an additional paper of
Tsalidis, computed K(Zp)

∧
p for p > 2. The case for p = 2

was computed by Rognes. Another early calculation was due
to Hesselholt and Madsen who computed K(k[x]/(xm)) for k a
perfect field of characteristic p.

(2) In 2024, Antieau, Krause, and Nikolaus created algorithm to
compute K(Z/pk). These approaches also work for ring spectra
as opposed to just rings, and Ausani-Rognes computedK(KU).

(3) A theorem of Angeltreit, Gerhardt, and Hesselholt used modern
approaches to generalize Stasheff’s theorem from 1985 (men-
tioned in the previous lecture). They showed

Kq(Z[x]/(xm), (x)) ∼= Zm − 1

for q odd, and |Kq(Z[x]/(xm), (x))| = (mq)!(q!)m−2 for q even.
(4) In 2023, Burklund, Hahn, Levy, and Shlank’s disproof of the

telescope conjecture used trace methods. In simplest terms, the
telescope conjecture was a conjecture of Ravenel from 1984, and
compared SpK(n) and SpT (n). It is known that K(n)-local spec-
tra are included in T (n)-local spectra, and Ravenel wondered
whether it was in fact an equality. Burklund-Hahn-Levy-Shlank
constructed counterexamples for all n ≥ 2. In particular, they
gave spectra Gn such that LT (n)K(Gn) are not Kn-local.

We now proceed with the Nikolaus-Scholze approach to topological
cyclic homology. Recall that THH(A) has an S1-action since it is the
realization of a cyclic object.

Definition 3.2. [Nikolaus-Scholze] For a ring A, the topological cyclic
homology of A is

TC(A) := Eq(TC−(A)
can−−→−−→
φ

TP (A)∧).

We proceed by unpacking the following definitions: TC−(A) :=

THH(A)hS
1
is a topological version of negative cyclic homology. Simi-

larly, TP(A) := THH(A)tS
1
is topological periodic homology.

Let G be a finite group (or by Greenlees and May, any compact Lie
group). Let EG be a contractible space with a free G-action. For X a
spectrum with a G-action, we define the homotopy fixed points of X
as

XhG := F (EG+, X)G

where F (EG+, X) denotes the mapping spectrum. These are non-
equivariant maps and we consider the fixed points with respect to the
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conjugation action. We also have the homotopy orbits

XhG := EG+ ∧G X.

Now consider the map

EG+ → S0 → ẼG

where ẼG denotes the cofiber and the first arrow is the map that
sends the base point to 0 and everything else to 1. To this we apply
the functor − ∧ F (EG+, X) and we get

(EG+ ∧ F (EG+, X)) → S0 ∧ F (EG+, X) → (ẼG ∧ F (EG+, X)).

Recall that S0 ∧ F (EG+, X) ∼= F (EG+, X). Now we take G fixed
points, which yields

(EG+ ∧ F (EG+, X))G → F (EG+, X)G → (ẼG ∧ F (EG+, X))G.

By definition, the middle term is XhG and the first term is isomorphic
to XhG, so we have a map N : XhG → XhG, for which we denote the
cofiber X tG and call the Tate fixed points. Making the appropriate
identifications we get the sequence

XhG → XhG → X tG,

and this sequence is known as the Tate spectrum.
Why is this called so? In algebra, for a finite group G and M a

G-module, there is a norm map

MG → MG

[x] 7→
∑
g∈G

g · x

We could think of this instead as a map

H0(G;M) → H0(G;M).

Then Tate cohomology is defined as

Ĥ i(G;M) :=

{
H i(G;M) i ≥ 1

H−i−1(G;M) i ≤ −2.

We extend to i = 0 using the sequence

0 → Ĥ−1(G;M) → H0(G,M) → H0(G;M) → Ĥ0(G;M) → 0.

We have a spectral sequence Ê2
∗∗ = Ĥ∗(G; π∗X) =⇒ π∗(X

tG).
Recall definition 3.2 and note that it is the same as

Eq(THH(A)hS
1

can−−→−−→
φ

THH(A)tS
1

).
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Now we will give the analogous topological definition:

Definition 3.3 (Nikolaus-Scholze). For a ring spectrum R,

TC(R) = Eq(THH(R)hS
1

can−−−−−→−−−−−→
(ρp)hS

1

πp(φ
∗
pTHH(R)tCp)hS

1

).

where ρp is the isomorphism ρp : S
1 → S1/Cp.

We have

THH(R)hS
1 ≃ ((THH(R)hCp)hS

1/Cp ≃ (ρ∗p THH(R)hCp)hS
1

then using the canonical map we get

can : (THH(R)hCp)hS
1 → ((ρ∗pTHH(R))tCp)hS

1

,

which gives one of the maps in the definition.
The other map (φp)

hS1
uses that topological Hochschild homology is

a cyclotomic spectrum:

Definition 3.4 (Nikolaus-Scholze). A cyclotomic spectrum is a spec-
trum with an S1 action and S1-equivariant maps ϕp : X → X tCp for
all p.

Theorem 3.5 (Hesselholt-Madsen, Nikolaus-Scholze). THH(A) is cy-
clotomic.

This approach made things a lot more computable. For example,
we have spectral sequences computing homotopy fixed points and the
Tate construction.


